MARK SCHEME for the May/June 2007 question paper

9701 CHEMISTRY

9701/04

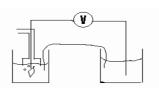
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.


CIE is publishing the mark schemes for the May/June 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

Page 2	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2007	9701	04

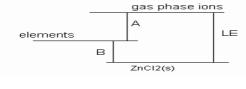
1 (a)

salt bridge + voltmeter zinc metal + Zn^{2+} H₂ (in, *not* out) + H⁺ Pt electrode all solutions at 1 mol dm⁻³ T = 298K *or* 25°C

[1] [1] [1]

[1]

[1]


[1] **[6]**

(b)

conditions	product at anode	product at cathode
ZnCl ₂ (I)	(chlorine)	zinc [1]
ZnCl ₂ (conc aq)	chlorine [1]	$(H_2 \text{ or } zinc) (ignore)$
ZnCl ₂ (dil aq)	oxygen [1]	hydrogen [1]
		E 43 C 1 1 1 1 1

[1] for each product in correct place [4] [4]

(c)

$$LE = B - A$$

= -415 - (131 + 908 + 1730) - {244 + 2(-349)}
[1] [1]
= -415 - 2315
= -2730 (kJ mol⁻¹)

[1]

(correct answer = [3]: deduct [1] for each error) [3]

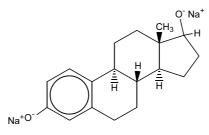
(d) (i)

- instrumental method (e.g. spectrophotometer/colorimeter/conductance meter)
- what is measured (e.g. absorbance/transmission at a stated wavelength or by use of a "suitable" (green) filter or conductance/resistance)
- measurement of time
- relation of time to rate (e.g. gradient of absorbance/time graph, or rate $\propto 1/t$)
- repeat with different [Zn²⁺], (but the same [PAR])
 - relation of rate to [Zn²⁺] (either by a plot or by simple proportion)

(all 6 points are unconditional on each other) any 5 points [5]

(ii)	e.g. add Br ₂ (aq) decolourises <i>or</i> produces a white ppt.	[1] [1]
	or add FeCl ₃ (aq or "neutral"); purple colour produced	[1] + [1] [2]

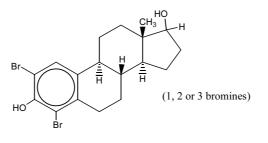
[Total: 20]


	Page 3	3		Mark Scheme		Syllabus	Paper	,
			GCE A/A	S LEVEL – May/June 2	007	9701	04	
2	(a) 2Ca	a(NO₃)₂> 2CaO +	+ 4NO ₂ + O ₂			(or x ½)	[1] [1]
	(ca (<i>or</i>	t)ionio ionic	c size/radius incre charge density d	up (<i>or</i> higher temperature eases down the group ecreases) nion/nitrate (ion) decreas				[1] [1] [1] [3]
	(c) (i)		O^{+} 17 = OH ⁺ N ⁺ 16 = O ⁺ = H ₂ O and B	$18 = H_2O^+ 28 = N_2^+ 30 = NO^+ = N_2O$	44 = N ₂ O ⁺	(ignore charge (ignore charges) (or in equatio	all 5 any 4 any 3	[1] [3] <i>[2]</i> [1] [1]
	(ii)	ин л	$NO_3 \longrightarrow N_2$	0 + 2H20				[1] [6]
	(1)	1 1 1 1 4 1						
							[Total: 10	max. 9]
3		2Pb0 +4 s			oup	} (0	r x ½)	[1] [1] [2]
	(b) (i)	Pb" :	Pb ^Ⅳ = 2:1					[1]
	(ii)	Pb ₃ C	$D_4 \longrightarrow 3PbC$	$0 + \frac{1}{2}O_2$				[1]
	(iii)	Pb₃C	D ₄ + 4HNO ₃ –	\longrightarrow 2Pb(NO ₃) ₂ + P	bO ₂ + 2H	₂ O		[1]
	(iv)	as P	. ,	asic than PbO₂/Pb(IV) ct /form a salt with HNO₃ c.	1			[1] [1] [5]
			2NaOH \longrightarrow O ₂ or PbO)	$Na_2SnO_2 + H_2O$		(or Na₂Sn(C	OH)₄ etc.)	[1] [1]
							ſ	Total: 8]

	Page 4		Mark Scheme		Syllabus	Paper	
		GCE A/A	S LEVEL – May/Jur	ne 2007	9701	04	
4	(a)	(between axes		(or $d_{x^2} - d_{y^2}$ i.	.e. along axes)		
		[1]		[1]			[2]
	(d)-ele repelle	ed/have higher ener	inting towards ligand		$_{2} - d_{y^{2}}$	[1] [1]	
		higher energy (<i>or</i> e 3-orbital group has	in diagram) the <i>lower</i> energy]			[1]	[3]
	(c) (i) C	= red D = blue				[1] + [1]	
	(ii) C	. because absorptio	n is at lower wavelen	ath/higher fregue	ncv	[1]	[3]
	(, -	,		ggq	,,		
						[Tota	I: 8]
5	II: III: IV:	(for I, mention of hf	ıct a mark ([1] only)			[1] [1] [1] [1]	
		electrophilic substitu oxidation <i>or</i> redox	ition (NOT oxygenation)			[1] [1]	[2]
	step V		+ ethanol/alcohol li/Pt/Pd/Rh <i>or</i> Na +	ethanol		[1] [1] [1] [1]	
	(d)	compound	reage cold water	ent not NaOH(aq)			

compound	r	eagent
compound	cold water	hot NaOH(aq)
E	no reaction	no reaction
F	no reaction	C₅H₅CH₂OH
G	C ₆ H₅CO₂H	C ₆ H₅CO₂ [−] Na ⁺

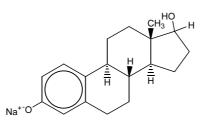
6 x [1] **[6]**


- 6 (a) (i) one correct atom circled
 - (ii) 5 (chiral centres)
 - (b) (i) sodium metal

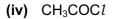
(charges not needed) [1] + [1]

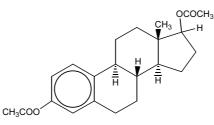
(if >1 are circled, all must be correct)

(ii) Br₂(aq)

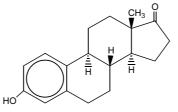


[1]


[1]

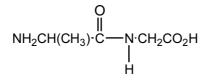

[1] [2]

(iii) NaOH(aq)


(charges not needed) [1]

[1]+ [1]

(v) hot acidified $K_2Cr_2O_7$


[1] (if one or more OH groups have been omitted in (ii), (iii) or (v) deduct [1] mark) [7]

[Total: 9]

Page 6	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2007	9701	04

7 (a) (i)

- addition requires an unsaturated/double bond or alkene/C=C
- condensation produces a small molecule or water as well as the polymer or loss of mass occurs on polymerisation
- the empirical formula of an addition polymer is the same as that of the monomer any two [1] + [1]
- (ii) minimum is:

peptide link shown [1] ala-gly NOT gly-ala [1]

3 x [1] [3]

(b) X = deoxyribose

Y	=	phosphate
		Alle a super line of

Z = thymine

(c) (i) (met)- ser-arg-asp- gly (ignore leading met) [2] whole sequence three in correct order = [1]. Deduct [1] mark if "start" or "stop" is included in the amino acid sequence (ii) The amino acid gly (or the last amino acid) would be replaced by trp [1] [3] (d) (i) e.g. Huntington's, cystic fibrosis, haemophilia, sickle cell anaemia thalassemia, muscular dystrophy, Down's syndrome, phenylketonuria [1] (ii) Suitable explanation e.g. wrong amino acid coded or different aminoacid sequence or incorrect protein produced or extra chromosome (for Down's) [1] ...results in/change in 3D structure/change in active site/loss of enzyme activity (or a specific description pertinent to the mentioned disease) [1] **[3]** [Total: 13]

Page 7					lark Sche			Syllabus	Paper	•
			GCE	E A/AS L	.EVEL – N	/lay/June 20	07	9701	04	
	the CC the <i>salv</i> acid	cathc D ₂ H (i anod <i>vage:</i> dic/lov	ode/negative or –NH ₃ ⁺) gro e/positive either: if I [1] or: if I ch v pH will prof	bup can l H⁺ gain/ld I mark. H⁺ gain/ld arge (+/- tonate th	lose a pro oss is des oss is not -) is given e amino a	ton and the r cribed but nc described bu , award [1] r	nolecule m direction at correct n bark. high pH wi	oves towards noves towards of movement is novement of ion Il deprotonate	-	
()	(-)		vay between							[1]
	(ii)	Dic	largor sinco	it travels	s moro slo	wly/does not	movolas	for as S		[1]
	(")	1113					11000 43			ניו
(c)	(i) (ii)	Seco	ond phase is	(oisture (N	IOT aqueous	, NOT stat	ionary)		[1]
			spot applier here	c I	A¢.	B solvent 2 — •		solvent		
								all 5 positio	ns correct	[2]
								•	4 correct	[1]
	(iii)	D								[1]
		~								[1]
	(iv)	1.								11
	(iv)	С								otal:

Pag	e 8	Mark Scheme	Syllabus	Paper
		GCE A/AS LEVEL – May/June 2007	9701	04
(a)	•	operties e.g. hite conducts electricity		
	• laye	rs in graphite slide over one another <i>or</i> is slippery <i>or</i>	acts as a lubricant	t
		xyballs are <i>more</i> slippery <i>or</i> have lower coefficient of to their property of being "molecular ball bearings"	friction	
	• grap	hite has higher m.pt.		
	• grap	hite has higher density		
	• grap	hite has lower solubility		
	 buck 	yballs can trap elements/atoms/particles within them	selves	
	• (Son	ne comment about the strength in each of 3 dimension	ons) (any three of the	<i>above)</i> 3 x [1]
• •	The (wal of graphi	ls of) nano-sized test tubes consists of (rolled/single) te	sheets	[1]
-	The ends	s are half a buckyball (buckminsterfullerene)		[1]
		are similar in size to the wavelength of uv light ect/deflect/scatter (NOT absorb) the harmful radiation	on	[1] [1]
				[Total